路亚子线和主线连接图,求由曲线X2Y2Y围成的图形的面积
来源:整理 编辑:四国钓鱼 2022-11-19 13:28:45
本文目录一览
1,求由曲线X2Y2Y围成的图形的面积

2,计算由曲线yx2与yx2所围成的平面图形的面积谢谢
y=x2y=x+2∴x=-1 x=2 y=1 y=4 
3,函数yx2的图像过点04的直线l与x轴平行且抛物线相交于A
1)y=4,x=2或x=-2A(-2,0);B(2,0)2)AB=|(-2)+2|=4S△AOB=1/2(4*4)=8搜一下:函数y=x2;的图像,过点(0,4)的直线l与x轴平行,且抛物线相交于A,B两点,求1)A,B两点的坐标2)ΔAOB的面
4,函数yx2的图形上哪一点的切线与直线y12x10平行并求切线方程
解设函数y=x2的图形上某一点的切线与直线y-12x-1=0平行设该点为P(x0,y0),故函数y=x2在点P(x0,y0)处切线的斜率k=12则由y=x^2得y=2x则f(x0)=2x0=12解得x0=6则y0=6^2=36即P(6,36)则切线方程y-36=12(x-6)即y=12x-36即为y-12x+36=0
5,求由曲线yx23x5和yx25x9所围成图形的面积
令x2+3x+5=-x2+5x+9x2-x-2=0(x+1)(x-2)=0x=-1或x=2x=-1时,y=(-1)2+3·(-1)+5=3x=2时,y=22+3·2+5=15两曲线交点坐标(-1,3),(2,15)∫[-1:2][(-x2+5x+9)-(x2+3x+5)]dx=-∫[-1:2](2x2-2x-4)dx=(x2+4x-?x3)|[-1:2]=(22+4·2-?·23)-[(-1)2+4·(-1)-?·(-1)3]=9两曲线所围成图形的面积为9
6,求yx2在3 9处的切线和法线方程
y=2x,∴x=3时y=6,所以切线斜率为6,法线斜率为-1/6;因为过(3,9),所以为y=6x-9和y=-1/6x+19/2解:
当x=π/3时,y=cosπ/3=0.5
则切点坐标是p(π/3,0.5)
y导数=-sinx
则切线斜率k1=-sinπ/3=-0.5根号3
则直线方程式y-0.5=-0.5根号3(x-π/3)
法线的斜率是k2=-1÷k1=3分之2根号3
法线也过点p
则法线方程y-0.5=3分之2根号3(x-π/3)
有问题可以加我建的学习群4656639
7,求由曲线YX2直线YXY2X所围成图形的面积是为什么 问
2 1 2 1[2*4/2-∫(x^2)dx]-[1*1/2-∫(x^2)dx]=[4-(1/3)x^3| ]-[(1/2)-(1/3)x^3| ]=7/6 0 0 0 0写的不好,思路就是分别求出曲线Y=X2与直线Y=X的交点(1,1)和曲线Y=X2与直线Y=2X的交点(2,4),然后用Y=X2与直线Y=2X所围成图形的面积减去Y=X2与直线Y=X所围成图形的面积就等于曲线Y=X2,直线Y=X,Y=2X所围成图形的面积。 如果觉得满意的话,望君采纳,谢谢~1、Y=2X,Y=0,X=2所围成的面积。S1=2×4/2=42、Y=X,Y=0,X=1所围成的面积。S2=1×1/2=1/23、Y=X^2;,Y=0,X=1,X=2所围成的面积。S3=(2^3-1)/3=7/3所求面积为S=S1-S2-S3=4-1/2-7/3=7/6y=x^3与y=2x联立 交点为x^2=2,所以交点坐标为(2^1/2,2*2^1/2)和(-2^1/2,-2*2^1/2) 事实上y轴两天的图形是按原点对称的,只需计算x>0的情况,再把答案乘以2便可 积分(2x-x^3)(0到2^1/2)=(x^2-1/4*x^4)(0到2^1/2)=1 所以所求面积为2
文章TAG:
路亚子线和主线连接图路亚 主线 连接